MODERN WELL DESIGN

BERNT S. AADNØY

Rogaland University Center, Stavanger, Norway

A.A. BALKEMA / ROTTERDAM / BROOKFIELD /1996

Contents

FC	2. Results from simulation studies OREWORD OREWORD OREWORD	
PF	REFACE which severs the orbital aspects of well daugh has byfaming8-2	IX
LI	ST OF SYMBOLS AND UNITS	
1	INTRODUCTION TO THE WELL DESIGN PROCESS	
	shed to war design, both during the drilling and the completion playe. An	
	DRILLING DESIGN of, both for safety and screaming reasons so that each of	
	2.1 Selection of optimal mud weight	
	2.2 Hydraulic optimisation	
3	GEOMECHANICAL EVALUATION	
	3.1 Data normalisation and correction	
	3.2 Interpretation of field data	36
	3.3 Fracturing pressures for shallow penetration	
	3.4 Field evaluation of borehole collapse	58
	3.5 Drillability evaluation	72
	WELL DESIGN PREMISES	
T G	4.1 Well integrity Again the precious assess of well design to see	79
1	4.2 Casing sizes and setting depth	86
- 0	4.3 Completion and production requirements	97
E .	CASING DESIGN	
	5.1 Design criteria	
	5.2 Casing test pressure	103
		131
	5.3 Casing design example	131
	DESIGN OF AN HPHT WELL	156
	6.1 Introduction	156
	6.2 Design premises	156
	6.3 Geomechanical design	160
	6.4 Design of the mud weight schedule	176
	6.5 Production casing considerations	184

VI Contents		
6.6 Design of shallow casing strings	189	
6.7 Design of the 14 inch intermediate casing string	195	
6.8 Design of the production casing string	199	
APPENDIX A: A SYSTEM FOR EXPERIENCE TRANSFER	209	
A.1 Selection of elements to evaluate	209	
A.2 Time analysis of field data	209	
A.3 A simple system for experience transfer	222	
APPENDIX B: EVALUATION OF BALLOONING IN DEEP W	VELLS 224	
B.1 Introduction	224	
B.2 Results from simulation studies	225	
B.3 Coupling between pit gain and mud density	090 Web 231	
B.4 The gas problem	233	
B.5 Summary	233	
REFERENCES	MAZJOHW 7790 T 235	
SUBJECT INDEX 2230099 MOREAG JUEW 3FG	OT MOST SUBSESSED 239	